Croaking Science: Toxicity in amphibians
Frogs, toads and salamanders have long been considered to be noxious and a large range of amphibian species have been found to secrete toxic chemicals from their skin. Over recent decades the type and mode of action of these chemicals has been characterised from many amphibian species. Toads of the genus Bufo, for example the common toad (Bufo bufo), are able to synthesize and store a host of chemicals, some of which are known as steroidal bufadienolides (Daly, 1998). These are a type of cardiac glycoside and specifically block nerve action in the heart, resulting in irregular or slow heartbeat, rapid heartbeat and possibly lethal cardiac arrest in their predators. Leptodactylid frogs, which includes a diverse range of species from the Neotropics, harbour phenolic amines in their skin which are toxic to a range of vertebrate predators. Another class of amphibian toxins are the tetrodotoxins (TTX), which were originally discovered in newts of the family Salamandridae, specifically of the genus Taricha. The rough-skinned newt (Taricha granulosa) of North America is the most toxic salamander in this region and is considered harmful to humans (AmphibiaWeb, 2014) (Figure 1). This species, along with others in the Salamandridae family, such as Triturus newts (e.g. great crested and Italian crested newts) from Europe contain tetrodotoxin in their skin, which is a potent neurotoxin and is a sodium channel blocker. This means that it inhibits the firing of action potentials in neurons and prevents the nervous system from carrying messages and thus muscles from flexing (Bane et al., 2014). Some of the most well documented species of frog containing skin toxins are the poison dart frogs of South America. Unlike Bufo toads or salamanders, which synthesise their own toxins, poison dart frogs accumulate toxic lipophilic alkaloids from their food sources which may be small arthropods, such as mites, ants, springtails, and flies (Daly, 1998).
Most salamander species lack toxic skin secretions, but contain other active compounds such as norepinephrine, steroids, enzymes, and antimicrobial or antifungal substances (Daly, 1998). Many may also produce adhesives for defence (Evans & Brodie, 1994). For example, once attacked by a predatory snake, the California slender salamander (Batrachoseps attenuates) grasps the snake, loops its tail around the snake’s head and coats the predator with a sticky viscous fluid (Arnold, 1982). The adhesives in the secretion harden within seconds upon exposure to air and immobilize the snake immediately (Arnold, 1982). The salamander then escapes and the snake is unable to free itself for up to 48 hours (Arnold, 1982). There is a great deal of interest in natural adhesives for human engineering and nanotechnology (Von Byern et al., 2017) and in creating mimics which can be produced commercially. In a set of experiments using several salamanders, Von Byern et al. (2017) found that some salamanders also produced toxic chemicals which augmented the effect of the adhesives. In addition, two salamander species, the northern slimy salamander (Plethodon glutinosus) and spotted salamander (Ambystoma maculatum) from North America produced adhesives which have the potential to be mimicked commercially and used in nanotechnology products. These findings highlight the importance of understanding skin chemicals in amphibians and the potential use in pharmacology and nanotechnology.

References
AmphibiaWeb (2014) Taricha granulosa: Rough-skinned Newt <http://amphibiaweb.org/species/4288> University of California, Berkeley, CA, USA. Accessed Oct 25, 2018.
Arnold, S.J. (1982). A quantitative approach to antipredator performance: salamander defense against snake attack. Copeia, 1982 (2): 247e253.
Bane, V., Lehane, M., Dikshit, M., O’Riodan, A. & Furey, A. (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins, 6: 693-755, doi:10.3390/toxins6020693.
Daly, J.W. (1998) Thirty years of discovering arthropod alkaloids in amphibian skin. Journal of Natural Products, 61: 162-172.
Daly, J.W., Wilham, J.M., Spande, T.F., Garraffo, H.M., Gil, R.R., Silva, G.L. & Vaira, M. (2007) Alkaloids in bufonid toads (Melanophryniscus): temporal and geographic determinants for two Argentinian species. Journal of Chemical Ecology, 33: 871–887.
Evans, C.M. & Brodie, E.D. (1994) Adhesive strength of amphibian skin secretions. Journal of Herpetology, 4 (499): 502.
Nelsen, D.R., Nisani, Z., Cooper, A.M., Fox, G.A., Gren, C.K., Corbit, A.G. & Hayes, W.K. (2014) Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them. Biological Reviews, 89: 450–465.
Raaymakers, C., Verbrugghe, E., Hernot, S. Hellebuyck, T., Betti, C. Peleman, C., Myriam, C., Bert, W., Caveliers, V., Baller, S., Martel, A., Pasmans, F. & Roelants, K. (2017) Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nature Communications, DOI: 10.1038/s41467-017-01710-1.
Von Byern, J., Mebs, D., Heiss, E., Dicke, U., Wetjen, O. Bakkegard, K., Grunwald, I., Wolbank, S. & Mühleder, S, Gugerell, A., Fuchs, H. & Nürnberger, S. (2017) Salamanders on the bench: a biocompatibility study of salamander skin secretions in cell cultures. Toxico